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Abstract

Insurance companies use rule systems for automated checks of insur-
ance claims. Many of these rule systems can be modeled and implemented
using decision tables. In this paper we analyze an existing rule system
and develop a model using propositional logic. It shows that root cause
analysis can be performed with a variant of propositional abduction. In
this approach we use rectification for explaining a rule system calculation.

1 Introduction
Business rules management systems are software systems for definition, deploy-
ment, execution and monitoring decision logic that is used by operational sys-
tems within an enterprise ([16]). Business rules are used for classifications ([10]),
complex calculations and determinations and also for checks of business objects
in automated processes.

Often business requirements define fine-grained checks for business objects.
In statutory health insurance in Germany certain rule systems are quite com-
prehensive and specified in about 300 pages. If business rules are violated often
officials have to control the data set according to the output of the rule system.
This process can be supported in different ways: usually messages of the rule-
set outcome are prioritized. In this paper we try out a different approach by
searching the root cause for calculations of the rule system. Looking for root
causes is well understood in abductive logic which looks for “best explanations“.
This method of non-monotonic reasoning has been intensively studied by Peirce
(see [12]) and introduced into modern logic. The special case of propositional
abduction is well understood (see [11] for current results).

In this section we start with a simple example of rule system and provide a
propositional model in section 2. In section 3 we will give a formal definition
of the root cause analysis problem in the paper and compare it with other
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defintions from literature. In section 4 we present a case study from a rules
system in statutory health insurance.

Many business rules management systems like ARIS, ILOG-JRules and BRF-
plus (see [1]) offer decison tables which are widely used to define business rules
in a precise and compact way that is well understood by business people and
can be easily maintained using spreadsheet software. They are known since the
50s of the last century (see [13] and [15]). Both books contain formal definitions
of decision tables which will be omitted here. In this paper we will consider mul-
tiple hit decision tables where each row is evaluated and an action is triggered
if the corresponding logical expression is fulfilled.

Decision tables consist of rows and columns where each row represents a
rule. Each column represents a property of an business object like an insurance
claim checked with that decison table. A typical property is the number of
procuments of type A1 in an insurance claim for example. Each cell of the
decion table consists of a comparison of that property and a rational number.
A cell can be empty which means the conditions always evaluates to true.

We present a simple example of a rule system containing two checks C1 and
C2:

number of procurements number of procurements patient’s age check
of type A1 of type A2

> 2 > 5 C1

> 10 > 12 C2

C1 evalutates to true if and only if the number of procurements of type A1
is greater than 2 and the number of procurements of type A2 is greater than 5.
C2 evalutates to true if and only if the number of procurements of type A1 is
greater than 10 and patient’s age is greater than 12.

In business rule systems like BRFplus the columns of a decision can be
arbitrary expressions. The case study in section 4 shows that the restriction
to simple comparison is reasonable. The reason why we consider BRFplus is
that BRFplus is the strategic BRMS solution of SAP and the rule system in
statutary health insurance which are analyzed in this paper are developed on
the SAP platform.

Let us now consider the case a business entity is checked using a rule system
and we get a set of checks which evaluated to true. In the following we will
focus on the task of finding the root cause for the outcome of the rule system
by using propositional logic.

2 Modeling rule systems using propositional logic
At first we define some common basic notations in the area of propositional
logic. Let LV be the language of propositional logic over an alphabet V of
propositional variables with the usual syntactic operators ∨, ∧ and ¬, moreover
⊕means exclusive-or. A theory is a finite set T ⊆ LV which is the conjunction of
its expressions for reasons of convenience. A literal is an expression v (positive
literal) or ¬v (negative literal) for a propositional variable v. A clause is a
disjunction of pairwise disjoint literals. We denote > with truth value true and
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⊥ with false. An assignment of a propositional formula is a function from a set
of propositional variables of that expression to {>,⊥}. This assignment defines
an interpretation that assigns the expression a truth value. Given a expression
ϕ we denote with Lits(ϕ) the set of literals of ϕ. For an expression ϕ → ψ we
call ϕ antecedent and ψ consequent. A disjunction of with at most one negated
literal is called a Horn clause. A Horn clause with exactly one positive literal
is a definite clause. A disjunction of literals with at most one negated literal is
called a dual-Horn clause. Sometimes we use implication form where a definite
clause ϕ has the form ψ → v where Lits(ϕ) are positive.

In the following we show a very simple example for a propositional rule set.
This approach is quite common since logical expressions without equality can
often transferred into propositional logic which makes computations easier. We
will omit the procedure and jump right into an example. Let v1, v2, v3, v4 and
v5 be the following propositional variables with following meaning:

v1 := “number of procurements of type A1 is greater than 2“
v2 := “number of procurements of type A2 is greater than 5“
v3 := “number of procurements of type A1 is greater than 10“
v4 := “patient’s age is above 12“
v5 := “treatment type B is contained in an insurance claim“

A rule system consists of propositional expressions that describe checks of
anomalies like the following which define rules for other propositional variables
m1, m2, and m3 called manifestations:

v1 ∧ v2 → m1 (C1)
v2 ∧ v4 → m2 (C2)
v3 ⊕ v5 → m3 (C3)

The theory {C1, C2} is exactly a propositional version of the decision table
in section 1. The expression C3 does not come from propositional models of
decision tables and is a generalization we also take into account.

In abductive logic we are interested in finding root causes. Therefore we
introduce hypotheses and search for a subset of hypotheses which is consistent
with the knowledge base so that hypotheses together with the knowledge base
entail the manifestation. When working with decision tables the definition of
hypotheses is quite canonic if we look at a specific instance of a rule system. We
continue the example from above. The rule system checks an insurance claim
with the following properties:

h1 := “number of procurements of type A1 is 15“
h2 := “number of procurements of type A2 is 10“
h3 := “patient’s age is 18“
h4 := “treatment type C is contained in an insurance claim“

For those hypotheses the propositional variables v1, v2, v3, and v4, are >
and v5 is ⊥. If we apply the checks C1, C2 and C3 to them and obtain mani-
festantions m1, m2 and m3. Now we give a formal definition for rule systems
coming from decision tables.
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Definition 1 (Conjunctive Rules). Let V and M be sets of propositional
variables and T a theory with Lits(T ) = V then (V,M, T ) is called conjunctive
rule instance if the following conditions hold:

• H ∪M = V and H ∩M = ∅,

• T consists of definite Horn clauses (
∧
hi) → m with hi ∈ H and v ∈ V .

and definite dual Horn clauses h1 → h2 with h1, h2 ∈ H.

When the T contains also expressions (
⊕
hi)→ m for hi ∈ V and m ∈M , we

speak of an instance with exclusive disjunction-rules.

3 Propositional abduction and rectification
According to [5] we define the propositional abduction and its solution as follows:

Definition 2 (PAP). A propositional abduction problem PAP consists of a
tuple (V,H,M, T ) where V is a finite set of propositional variables, H ⊆ V is a
set of hypotheses, M ⊆ V is a set of manifestations, and T ⊂ LV is a consistent
theory.

Definition 3 (Solution of a PAP). Let P = (V,H,M, T ) be a PAP. S ⊆ H
is a solution or explanation to P if and only if T∪S is consistent and T∪S |= M .

We denote with Sol(P) the set of solutions of a PAP. Sol�(P) is defined as
the set of minimal solutions due to subset inclusion and Sol≤(P) is the set of
minimum solutions due to cardinality.

In the following we mention some complexity results of propositional abduc-
tion. See [9] for example for an introduction into complexity theory. In [5] it is
proven, that deciding whether a propositional abduction problem (V,H,M, T )
has a solution is ΣP

2 -complete even ifH∪M = V and T is in clausal form. Please
note that according [5] neither H ∩M = ∅ nor H ∪M = V is a restriction from
the point of view of computational complexity. Computing a ≤-solution for
a propositional abduction problem is NP-hard if the knowledge base is definite
Horn. If the knowledge base is definite Horn and hypotheses are positive literals
and the manifistation is give by a positive term we have polynomial complexity.
In [11] the results are generalized where the manifestation is a general proposi-
tional expression instead of a conjunction of variables. The results are proven
for other sets of propositional formulae related to boolean functions in Post’s
lattice (see [3] and [4]).

Applying the PAP to a set of conjunctive rules is straight forward:

1. An insurance claim that is checked by a rule systems has certain properties.
Those properties correspond to a assignment of propositional variables H.

2. The theory T represents the rules which evaluate to >. The set M is
defined as the union of the consequents of those rules.

3. The set of propositional variables V is defined as H ∪M .

Please remark that H ∪ T |= M hold. Since consist of Horn clauses PAP
with conjunctive rules can solved efficiently.
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Proposition 1. Let P = (V,H,M, T ) be PAP with conjunctive rules for a
decision table instances. Then P is solvable in polynomial time.

Proof. The set of clauses T consists of Horn clauses and in [5] it is proven in
polynomial time.

It is easy to see that the same is true if the PAP for a decision table instance
contains also exclusive disjunction-rules.

It turns out that this abduction problem is not suitable in the case studied
here. The reason is due to conjunctive rules: every property, that is part of a
rule leading to a manifestation, is part of the solution of the abduction problem.
As a consequence the solution is in general much too big. Therefore another
approach is chosen here: instead of looking of minimum model we ask, which
kind of hypotheses have to be negated so that no rule is valid. This corresponds
to the following intuition: if we explain the results of a rule system that looks for
conspicous features of an insurance claim, we have to find out, which properties
have to be changed or rectified so that the insurance claim passes all checks.

Definition 4 (Rectification). Given an instance P = (V,H,M, T ) of PAP,
a rectification is a minimum set R ⊆ H with the following property: the assign-
ment, which sets all r ∈ R to ⊥ and all h ∈ H\R to >, is an interpretation that
sets all terms of T to ⊥ and so all manifestations.

The solution of the rectification problem is the smallest set of hypotheses
whose removal from the set of hypotheses is not a model of the manifestations.
This is motivated due to the fact that business rules systems are applied to an
insurance claim and we want to find out which properties have to be removed,
so that the rule systems does not show conspicuous features. These conspicuous
features represent checks occurring as manifestations that we want to explain.
Instead of explaining these with the traditional methods of abduction, we look
how the insurance claim must be altered so that manifestations vanish, so that
the propositional expressions representing the checks turn from true to false
which means that there are no more conspicuous features.

When we continue the example from section 2, we get the those following
result:

• The solution of the minimum PAP defined by the checks C1 and C2 is
{h1, h2, h3}.

• The set {h1, h3} is the solution of the rectification problem since together
with the knowledge base it entails the manifestations {m1,m2}. Moveover
this is a rectification with minimum cardinality.

Minimum solutions of the rectification problem are of special interest since
they indicate a small set of hypotheses that should be changed to achieve a valid
instance.

Proposition 2. Finding a minimum solution of the rectification problem is
NP-hard even for conjunctive rules.

Proof. Let P = (V,H,M, T ) be an PAP for a rule system instance. Finding a
rectification is in NP since for given R ⊆ H we can check in polynomial time
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that the expressions of T are set to ⊥ by the assignment in the definition in the
rectification.

We show NP-hardness by performing a reduction from the hitting set prob-
lem (see [9]). Therefore we look at the special case where ‖H‖ = ‖M‖ and T
consists of clauses Ci with Ci → m for m ∈ M , where all Ci consists of logical
conjunctions. Finding a rectification with size k ≤ ‖H‖ is equivalent to the
hitting set problem. This can be seen easily since we have to choose a set with
cardinality k of positive literals of the manifestations, that turn every antecedent
of a formula in T to false when assigning all variables in R to false.

Abduction using set covering has been described in literature many times
(see [14] for example). The application here is different due to the different
definition of root cause analysis.

4 Case study
In statutory health insurance in Germany orthodontical treatments are checked
in automated processes using rule systems. Per month more than 20.000 data
sets have to processed and many of them are conspicuous and rule sets generate
between 20 and 80 actions where each corresponds to a certain business rule that
is violated. Every rule within the ruleset can be modeled using propositional
expressions. 95% of all rules can be expressed as decision table that corresponds
to a boolean formula consisting only of and-clauses. If we allow additional exclu-
sive disjunction clauses, 98% of rules can expressed in the framework presented
in this paper. The remaining rules are extraordinary complex, and others need
special workflows to check them.

The rule system was implemented with a decision table with 89 rows and
124 columns. Each row represents a rule and each column a property of an
insurance claim. In the following we look at the bipartite incidence graph of
columns and rows of the decision table. This graph consists of 23 connected
components and is sparse since it has 213 vertices and 233 edges. This means
that the rule set is decomposed into different parts and abduction as well as
restriction problems can be calculated for the parts.

The average degree of the clause-literal incidence graph is 2.188. The degree
distribution is seen in figure 1. Those properties of the graph have been calcu-
lated using Gephi software 0.8.2 beta (see [2]). The main component consists
of 137 nodes, 172 edges and has treewidth 3 which is also the treewidth of the
graph. This property have been calculated using the libTW software package
(see [8]).

To test whether rectification is reasonable for finding explanations of the
rule system outcome we created a number of random instances and applied root
cause analysis. The results are shown in the following table:
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Figure 1: Distribution of vertex degrees

checks manifest- hypo- size of abductive size of
ations theses explanation rectification

17 30 17 14 5
8 14 14 11 11
11 16 8 7 5
6 10 7 7 3
3 5 7 6 3

In 4 of 5 cases root cause analysis reduced the number hypotheses com-
pared to an abductive explanation. Even in the case that where the number
of hypotheses could not be reduced, shows that there are instances that can-
not be corrected with a few changes. They contain many errors and should be
investigated in depth.

It turned out that a greedy approach solved the approach optimally in all
cases.

5 Conclusion and open questions
Abductive inference has many applications and system diagnosis is one of them.
It seems that up to now there has been no reseach of the outcome of business
rule systems with abductive logic although it is an obvious use case. In this
paper a rule system implemented using decison tables has been studied. Due
to its simple structure their outcome can be analyzed effectively using a vari-
ant of propositional abduction. First experiments showed that this approach
is promising. This approach should be validated using real world data and
business process experts should review the results. Moreover penalization and
priorization like in [5] in algorithm for rectification should be investigated.
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Rectification is a promising approach for systems analysis when the set of hy-
potheses is quite big, is already a model of the manifestations and are hypotheses
are needed for an explanation. This is the case when explaining the results of
a rule systems created with decision tables. Instead of looking for small models
we are looking for models as explanations, that don’t have certain, unwanted
properties.

Although the rectification problem defined in this paper is NP-hard, in the
case study a greedy algorithm that chooses the hypotheses with most implica-
tions always found an optimum solution. There is the open question whether
this approach holds due to the structure of the conjunctive rules obtained from
a decision table. In general the computational complexity of abduction is very
high, but it has been remarked and reported in literature that in real-world
problems abduction is often tractable. For solving general rectification prob-
lems one has to find efficient algorithms. Kernelization ([6]) is promising since
the problem is related to set covering and the propositional model of the rule
systems allows preprocessing.

The case study showed that the treewidth of the graphs associated to the rule
systems is low, although bipartite graphs have no limited treewidth in general.
The low treewidth is interesting since algorithms based on tree decompositions
([7]) may lead to promising results in algorithm design.
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